The Microwave Spectrum and Molecular Structure of Monochloramine

By D. G. LISTER and D. J. MILLEN*

(The Christopher Ingold Laboratories, Chemistry Department, University College London, 20 Gordon Street, London WC1H 0AJ)

Summary A convenient method of preparing monochloramine for microwave spectroscopy is described; the molecular structure and chlorine and nitrogen quadrupole coupling constants (χ_{aa}) have been determined.

The $l_{01} \leftarrow 0_{00}$ transitions of five isotopic species of monochloramine have been observed using a conventional 100 kHz Stark modulation spectrometer operating with samples at approximately -30° . The monochloramine was prepared in the waveguide cell by mixing dichlorine oxide vapour (ca. 1 volume) with the vapour from an aqueous solution of ammonia (ca. 5 volumes) at a total pressure of less than 1 cm Hg. Monochloramine appears to be the main product of reaction under these conditions and the microwave spectra of dichlorine oxide¹ and hypochlorous acid² have not been detected in the mixtures. The spectra of the deuteriomonochloramines were observed using a solution prepared by dissolving NH₃ gas in D₂O. The monochloramine lines were identified by their characteristic Stark effects and nuclear quadrupole hyperfine patterns. The theory of Bardeen and Townes³ has been used to analyse the nuclear quadrupole effects. The line frequencies corrected for hyperfine structure, and the chlorine and nitrogen nuclear quadrupole coupling constants (χ_{aa}) are given in the Table.

TABLE			
	B + C MHz	χ_{aa} (chlorine) MHz	χ_{sa} (nitrogen) MHz
NH ₂ ³⁵ Cl	$28063 \cdot 51$	-99.5	5.4
NH ₂ ³⁷ Cl	$27602 \cdot 14$	-78.5	5.5
NHD35Cl	$26213 \cdot 10$	-99.2	5.4
NHD37Cl	$25768 \cdot 27$	-78.5	
ND,35Cl	$24599 \cdot 80$	-99.8	

TADIE

If centrifugal distortion effects are neglected, the $l_{01} \leftarrow 0_{00}$ transitions occur at B+C. The quantity $A - \frac{1}{2}(B+C)$ has been determined with useful accuracy for $NH_2^{35}Cl$ and

NHD³⁵Cl by high-resolution i.r. spectroscopy,⁴ and combination with the microwave data gives A for these two isotopic species. A least-square fitting procedure to 1/Aand 1/(B+C) has been adopted to give essentially an r_0 structure and the following parameters may be taken as a preliminary structure for monochloramine.

$r_{\mathrm{N-Cl}} = 1.750$ Å	$r_{\rm N-H}=1.025~{\rm \AA}$
/ NHCl = 104°	/ HNH = 99°

 ϕ = angle between bisector of \angle HNH and the extension of the N-Cl bond = 68°.

The N-Cl bond length is the most accurately determined feature of the structure and may be compared with that in dimethylmonochloramine^{5,6} (N-Cl = 1.75 Å) and methyldichloramine⁵ (N-Cl = 1.76 Å) as determined by electron diffraction. The N-H bond length is slightly longer and the HNH angle narrower than in ammonia⁷ (r_0 N-H = $1.017 \ /$ HNH = $107^{\circ}47'$). The degree of non-planarity quantified by ϕ has been determined for a number of other NH₂X molecules, ammonia⁷ (ϕ ca. 59°), methylamine⁸ (ϕ ca. 52°), cyanamide⁹ (ϕ ca. 38°), formamide¹⁰ (ϕ ca. 17°), nitramide¹¹ (ϕ ca. 51°), aniline¹² (ϕ ca. 39°), and p-fluoro-aniline¹³ (ϕ ca. 46°). The low values for ϕ in many of these molecules is usually interpreted in terms of the planar NH₂⁺ = X⁻ structure contributing significantly to the overall state of the molecule, a situation that is not likely to occur in monochloramine.

We have found no inversion doubling in the microwave spectrum of monochloramine; this indicates that the rotational constants for the O^+ and O^- states are very similar and that the energy difference between these states is small. There is no evidence for inversion from the NH_2 wagging vibration in the i.r. spectrum.⁴ This may be contrasted with the molecules listed above all of which have an O^+ - O^- separation larger, and a barrier to inversion smaller, than that for ammonia.

In monochloramine the a inertial axis is almost coincident with the N-Cl bond and χ_{aa} must be a good approximation to the quadrupole coupling constant along the bond. The chlorine coupling constants are smaller in magnitude than those of atomic chlorine (e.g., Q = -110MHz). This is consistent with either or both of some ionic character N⁺ Cl⁻ in the nitrogen chlorine bond or some s-character in the chlorine bonding orbital.¹⁴ χ_{aa} for the

nitrogen atom is appreciably larger than in the inertially similar molecules methylamine⁸ ($\chi_{aa} = 2.35$ MHz) and (amine-N $\chi_{aa} = 3.05 \text{ MHz}$), indicating a cyanamide⁹ difference between the electron distributions in N-Cl and N-C bonds.

We thank the S.R.C. and N.A.T.O. for financial support.

(Received, September 17th, 1970; Com. 1585.)

- ¹ G. E. Herberich, R. H. Jackson, and D. J. Millen, J. Chem. Soc. (A), 1966, 336.
 ² D. C. Lindsey, D. G. Lister, and D. J. Millen, Chem. Comm., 1969, 950.
 ³ J. Bardeen and C. H. Townes, Phys. Rev., 1948, 73, 97; C. H. Townes and A. L. Schawlow, "Microwave Spectroscopy," McGraw- ¹ Date Chi and G. H. Fowles, *Thys. Rev.*, *1949*, *76*, *97*, *6*, *74*, *60*, *76*, *87*, *61*, *61*, *74*, *60*, *76*, *4*, *6*, *E*. Moore and R. M. Badger, *J. Amer. Chem. Soc.*, *1952*, *74*, *60*, *76*, *5*, D. P. Stevenson and V. Schomaker, *J. Amer. Chem. Soc.*, *1940*, *62*, *1913*, *6*, H. A. Skinner and L. E. Sutton, *Trans. Faraday Soc.*, *1944*, *40*, *164*, *78*, *58*, *76*, *75*,
- ⁶ H. A. Skinner and L. E. Sutton, *Trans. Faraday Soc.*, 1944, 40, 104.
 ⁷ W. S. Benedict and E. K. Plyler, *Canad. J. Phys.*, 1957, 35, 1235.
 ⁸ D. R. Lide, jun., *J. Chem. Phys.*, 1957, 27, 343.
 ⁹ J. N. Macdonald, D. Taylor, J. K. Tyler, and J. Sheridan, *J. Mol. Spectroscopy*, 1968, 26, 285.
 ¹⁰ C. C. Costain and J. M. Dowling, *J. Chem. Phys.*, 1960, 32, 158.
 ¹¹ J. K. Tyler, *J. Mol. Spectroscopy*, 1963, 11, 39.
 ¹² D. G. Lister and J. K. Tyler, *Chem. Comm.*, 1968, 152.
 ¹³ A. Hastie, D. G. Lister, R. L. McNeil, and J. K. Tyler, *Chem. Comm.*, 1970, 109.
 ¹⁴ T. M. Sugden and C. N. Kenny, "Microwave Spectroscopy of Gases," Van Nostrand, London, 1965, p. 118.